

Atmospheric & Space Technology Research Associates LLC www.astraspace.net

Ensemble Assimilation Using First-Principles Models: A Tool for Three-Day Space Weather Forecasts

Space Weather Workshop, 2015

April 16th, 2015

G. Crowley¹, M. Pilinski¹, J. Wolfe¹, T. Fuller-Rowell², T. Matsuo², S. Solomon³, L. Qian³, J. Thayer⁴, M. Codrescu⁵

¹ASTRA LLC., ²CIRES. ³UCAR, ⁴U. of Colorado, ⁵NOAA

ASTRA: Space Weather Focus

Technology Applications

Bringing It All Together

Modeling

Physics-Based Modeling

Real-Time Specification of Ionosphere/ **Thermosphere**

(TIMEGCM)

Data **Assimilation**

High-latitude Electrodynamics

> Global Ionosphere

Thermospheric Neutral Density

Data **Services**

Space Based Data

Ground Based Data

Forensic Space Weather **Analysis**

Space weather Phone Apps

Ground-based Instrument **Development**

GPS-based Space Weather Monitor

E-fields and **Magnetometers**

> **Low Power** Ionospheric Sounder

HF TID Mapper

Lidar Systems

Space **Systems**

CubeSat Missions

NSF: DICE & LAICE

AF: DIME, SIPS & TSS

NASA: SORTIE & MiRaTa

Plug-N-Play Avionics

CubeSat Instruments

Scanning UV Photometer

E-field Double Probe

RF Waves & Sounder

Wind Profiler

GPS-based Space Weather Monitor

Magnetometer & **Langmuir Probe**

Satellite Aerodynamics

ASTRA • www.astraspace.net 303-993-8039 · solutions@astraspace.net

© 2015 Atmospheric & Space Technology Research Associates, LLC

Figure 1c: Typical profiles of neutral atmospheric temperature

Who cares about satellite drag?

Bringing It All Together

Satellite drag errors degrade capability to:

- Maintain accurate catalog of all space objects
- Predict and avoid space collisions
- Predict satellite reentry time & location

Bringing It All Together

Direct Atmospheric Impacts

- Density = f(Temp, Composition)
- Winds

Indirect Atmospheric Impacts (through force coefficient)

- Composition
- Temperature
- Winds
- Mean-Free Path

$$a_{D} = -\frac{1}{2} \frac{C_{D}(T_{a}, V, \lambda, n_{O}, n_{N_{2}}, ..., n_{H})A}{m} \rho(T_{a}, n_{N_{2}}, ..., n_{H})V^{2}$$

Density Perturbations at 400 km

❖Science❖ Technology❖ Applications

Bringing It All Together

ADAM Overview and Benefits

Technology Applications

Bringing It All Together

Resident Space Objects (LEO)

satellite drag and density observations

- Orbit observations
- GPS
- Accelerometers
- · 0/N2
- Mass Spectrometer

conjunction analysis

Results

- Improved satellite orbit nowcast and 72h forecast
- Improvements over HASDM and JB08
- Up to three-fold improvement during storms and solar minimum
- · Densities, winds, and composition outputs
- Covers altitudes from 30 km to 1500 km
- Improved performance during geomagnetic storms

Atmospheric

Density

Assimilation

Output information

orbit prediction and

determination tools

feeds into existing

Model

ADAM Architecture

Super-Ensemble Approach

	Requirement	Goal
Nowcast	Outperform JB08	Outperform HASDM
		(Jacchia '70, with 60-90 objects)
	JB08: 7-18% at 200-800km	HASDM: 6-10% at 200-800km
72h Forecast	Outperform JB08 in forecast mode	Outperform HASDM in forecast mode

ADAM Overview and Benefits

Science

TechnologyApplications

Bringing It All Together

satellite drag and density observations

- Orbit observations
- GPS
- Accelerometers
- · 0/N2
- Mass Spectrometer

conjunction analysis **A**tmospheric

Density

Assimilation

Output information

orbit prediction and

determination tools

feeds into existing

Model

ADAM Architecture

Results

- Improved satellite orbit nowcast and 72h forecast
- Improvements over HASDM and JB08
- Up to three-fold improvement during storms and solar minimum
- Densities, winds, and composition outputs
- Covers altitudes from 30 km to 1500 km
- Improved performance during geomagnetic storms

Super-Ensemble Approach

Image credit: TerraMetrics, Google

<u>Important Inputs to the</u> <u>Thermosphere – Ionosphere System</u>

ADAM top level design

❖Science❖ Technology❖ Applications

Bringing It All Together

G. Crowley, M. Pilinski, J. Wolfe

physics members (based on 40-day trailing average)

Improvements in neutral density when high-latitude electric fields are specified using assimilated electric fields

- Multiple model (super-ensemble) approach
- Dynamically tuned models result in optimum background atmospheric state
- Data Assimilation
- Graceful degradation in case of input-stream or model interruption
- Inclusion of TIME-GCM allows for specification of densities in the re-entry regime, down to 30km
- Inclusion of Helium in several models allows for drag computation up to 1500km

Architecture for Realtime Ensemble Runs

TechnologyApplications

Implemented and tested with:

TIE, TIME, CTIPe

 Ensembles executed in parallel on multiple cores

> Unified Input Database

- Schedule based rather than event based operation
 - Leads to graceful degradation in event of data-loss

time?

G. Crowley, M. Pilinski, J. Won

Assimilation

Optimal Interpolation (OI)

❖Science
❖ Technology

Applications

ADAM top level design

Science Technology Applications

Bringing It All Together

Realtime Ensemble Tests

❖ Science
 ❖ Technology
 ❖ Applications
 Bringing It All Together

- TLE's are being used as a stand in for orbital arcs analysis
 - Cadence and arc length is a conservative stand-in for the special-perturbations approach available operationally to the customer
 - Will transition to 6-hour arcs from special perturbations analysis in Phase III

- Temporary Drawbacks
 - Lower signal-to-noise
 - Latency (~1 day)

Assimilated Data Types

Data Type	Assimilation Time Span	Notes
Orbit Average Drag i.e. Calspheres, DANDE, POPACS	6-72 h	Infer observed energy dissipation rate (EDR) from general perturbations (TLEs) or special perturbations (high task tracking data). Select 30-90 objects with stable ballistic coefficients.
Orbit Average Densities	24 hours	Already processed high-task tracking data
Orbit Resolved Drag: GPS	15-30 min	Observed EDR from special perturbations and GPS measurements
Orbit Resolved Drag: accelerometers (Swarm)	15 min	Observed acceleration at 10-45 sec cadence (in-track and cross-track), binned to 15 min
O/N2 (GOLD, DMSP-SSUSI)	30 min	Dayside disk composition
Mass Spectrometer	10-30 sec	In-situ day and night composition

Technology

Applications

VANGUARD II

DFH-I

EXPLORER VII

DANDE

POPACS 1, 2, 3

RIGIDSPHERE 2

AZUR (GRS A)

PAM-D (left), SL-3 (center), SL-8 (right) rocket body outlines, shown to scale

190 – 900 km altitude, ±90° latitude coverage

- New state-of-the-art assimilative model of the thermosphere is being developed
- Include many of the lessons learned from NADIR MURI project (funded by AFOSR)
- 1st year into a 2-yr project
- Expected to meet AF goals and requirements for specifying satellite drag
- Future plans to make outputs commercially available to civilian customers

❖ Technology ❖ Applications Bringing It All Together

Science

Relative importance of various scales

- Large scale perturbations can be misrepresented in empirical models
- It takes long-wavelength perturbations to cause significant position errors
- 3U sun-pointing CubeSat $\frac{C_D A}{m} \approx 0.02 \quad \left[\text{m}^2/\text{kg}\right]$
- 100m errors are considered "significant" by USAF at 400 km altitude [Anderson et al. 2008]

❖ Technology
❖ Applications
Bringing It All Together

Science

Relative importance of various scales

What physical processes are important?

- Large scale storm structures
- Seasonal variability
- Density cell
- Cusp enhancement
- Non-hydrostatic effects

24 Hour Orbital In-Track Error at 400km Circular Orbit

❖ Technology❖ Applications

Science

Bringing It All Together

Relative importance of various scales

What physical processes are important?

- Large scale storm structures
- Seasonal variability
- Density cell
- Cusp enhancement
- Non-hydrostatic effects

24 Hour Orbital In-Track Error at 400km Circular Orbit

❖Science❖ Technology❖ Applications

Bringing It All Together

Relative importance of various scales

What physical processes are important?

- Large scale storm structures
- Seasonal variability
- Density cell
- Cusp enhancement
- Non-hydrostatic effects

24 Hour Orbital In-Track Error at 400km Circular Orbit

Science Technology Applications

Relative importance of various scales **Bringing It All Together**

What physical processes are important?

- Large scale storm structures
- Seasonal variability
- Density cell
- **Cusp enhancement***
- Non-hydrostatic effects

24 Hour Orbital In-Track Error at 400km **Circular Orbit**

^{*}not a persistent feature on these time scales

Science Technology Applications

Bringing It All Together

Relative importance of various scales

What physical processes are important?

- Large scale storm structures
- Seasonal variability
- Density cell
- Cusp enhancement
- Non-hydrostatic effects*

24 Hour Orbital In-Track Error at 400km **Circular Orbit**

^{*}not a persistent feature on these time scales